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IN A RECENT paper Adrianov and Polyak [l] point out 
that there exist differential approximations to the exact 
integral expression for radiative heat flux, and that these 
can give excellent results. We heartily concur with the 
authors and wish to point out that one of the approxima- 
tions discussed, the Schuster-Schwarzschild method, can 
easily be modified to be even better than indicated in their 
disksion. 

We use the nomenclature of [l] throughout. Equations 
(3) of reference [l] for a grey gas in local thermodynamic 
equilibrium are: 
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Equations (1) follow from an integration over angle 
of the radiative transfer equation, with m, and m_ 
functions of x. The Schuster-Schwarzschild method of 
reference [l] results from putting m.+ = m_ = 2. Let 
us assume only that m, = m_ = rfi wlthout yet specify- 
ing a value for fi. 

Differentiating equations (l), with dr = k dx, leads to 

$ (E+ - E-) = 4 !$ + rjja (E+ _ E_). 

Since q = E, - E_ this becomes 

d’q - ,4d$ +Ezq. 
dr8 

Equation (2), not considered in reference [l], is a single 
second order equation for q, the net radiative flux, 

whereas equations (1) form a system of two first order 
equations for the two components of this flu along 
x and -x. Which form is more useful will depend on 
whether the boundary conditions are on the separate 
flu components or on the net flux. Equation (2) shows 
immediately that for small optical thickness the trans- 
parent limit dq/dT = 4E0 can be recovered by dropping 
the second term on the right, the absorption term. For 
large optical thickness the Rosseland diffusion limit can 
be obtained by equating the first and second terms on the 
right and by choosing fia = 3. Choosing rTi’ = 4 as in 
[l] leads to an error in the large 5 limit, with q too small 
by a factor 314. 

Equation (2) with fiiB = 3 can be obtained in a number 
of ways and is equivalent to the Milne-Eddington 
approximation generalized to radiative-non-equilibrium 
(see Goody [2] and Viskanta and Grosh [3]). It may be 
of interest to point out, that a similar equation has been 
given by Rumynskii [4] which unfortunately also fails 
in the opaque limit. 

For radiative equilibrium it is pointed out by Sobolev 
[S] that a discrepancy of 3/4 exists in the large 7 limit for 
the Schuster-Schwarzschild method compared to the 
Milne-Eddington approximation, which becomes exact. 
But this factor is precisely the error of the Schuster- 
Schwarzschild calculation of Adrianov and Polyak [I] 
for large optical thickness when compared to an exact 
numerical calculation, see their Figs. 1 and 2. We there- 
fore suggest that with fi = 2/3 in equations (1) the 
results of reference [l] with this very sinmle model would 
have been even better, attaining the proper limit for large +. 

With this modification their Schuster-khwarzschild 
method, equation (4) of [l], becomes identical to their 
gradient method, equation (17) of [l]. It is of interest 
to note that Adrianov and Polyak’s equation (17), for 
the particular example considered, is precisely that 
recently given by Probstein [a, see his equation (11). 
Probstein obtains his result from the Rosseland diffusion 
approximation together with a temperature jump 
boundary condition, essentially modifying the opaque 
limit to be correct also in the transparent limit. 

As may be seen either from Fig. 1 of [l] or Fig. 1 of 
[a, excellent agreement with numerical calculations based 
on the exact integral expressions can be obtained. 

In summary, it appears that for those problems in 
which the nature of the boundary conditions makes a 
choice of the separate heat flux components as variables 
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logical, good results should be obtainable from equations 3. 
(I) with nz, = nr_ =z v//3. 
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OF 

MODEL DESCRIPTION 
THE model studied was a two-dimensional conductor of 
thickness I containing a cut of depth m and width n 
(cf. sketch in Fig. 1). The conductivity was taken to be 
constant. The problem, from the viewpoint of the de- 
signer, may be stated: Predict the length L’ of an equiva- 
lent conductor of uniform thickness 1 having the same 
gross conduction properties as a conductor of length L 
containing a cut such as depicted in Fig. 1. In order to 
obtain the solution to this problem, one may consider 
either of the following cases: 

1. insulated surfaces, flow along the conductor. 

2. Constant-potential surfaces, flow across the conductor. 

The constant-potential and how lines of the first case are 
respectively the flow and constant-potential lines of the 
second case. The cut increases the length of the equiva- 
lent conductor, in the first case, by increasing the 
resistance to flow and, in the second case, by decreasing 
the resistance to flow. For convenience, the discussion 
during the bulk of the paper is in terms of the first case. 

ANALYTICAL STUDIES 
Analyses of potential flows in systems with polygonal 

boundaries are facilitated by use of the Schwarz- 
Christoffel transformation [I, p. 4451. Using this method, 
Schofield [2] finds for the conductor being considered 

(1) 
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where the constants a and K are to be determined by 
solving simultaneously 

k2 sna cna 
- - Z(a) = & ‘f 

dna 

kz sna cnu 
dna 

-z(a,=2;, (;-y) 

(3) 

(4) 

(see, e.g. [3] for a discussion of elliptic integrals which is 
brief and yet is adequate for the present discussion). The 
first two terms appearing in the right-hand side of 
equation (l), i.e. (L - n)/l and n/(l - m), represent re- 
spectively the resistances of the parts with thicknesses 
I and 1 - rn to one-dimensional flows; the term X/I 
represents the additional resistance due to the fact that 
the flow paths are curved in the vicinity of the junctions 
of the parts with differing thicknesges. The probability 
that a design engineer would take the time required to 
solve simultaneously equations (3) and (4) appears to be 
small. Hence, a convenient approximate solution to 
equations (2-4) is sought. 

A useful guide in the search for this approximate 
solution is provided by the physical interpretation of the 
term X/l-“the additional resistance due to the fact that 
the flow paths are curved”. Curvature of the flow paths 
is due primarily to the fact that m/l is non-zero. Hence 
one is motivated to examine the term X/I for the limiting Nuclear and Thermal Division. 


